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Myths & truths

Academia

Goal: innovation, research
Freedom

Long-term research / impact
Flexibility in organizing self
Difficult work-life balance
Progress through failures

Struggle for money (grants, collabs)
Uncertain job security

Peer-review scrutiny

Lonely

Output: publish (or perish), presentations

Industry

Goal: monetization

Company needs

Short-term/changing plan, direct impact
More fine-grained, stricter plan

9-5 schedule

Should rarely fail

Direct money flow (e.g., sales)

Stable pay flow

Scrutiny by direct colleagues/managers
Team effort

Output: product, reputation, patents

(albeit, R&D is some middle ground)
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PhD timeline at EPFL

2011

Entry

- Bureaucracy for
Lausanne, Switzerland
- Search lab & advisor
- Courses to pass with
high grades

- Fun with colleagues
- Focus on setting up
PhD topic and work

- Idea for a paper, with
a PhD and postdoc
buddy

2012

Candidacy exam

- Candidacy project

- Run experiments

- Reading groups

- Teaching assistant
- Openhouse posters
- 1st submission
about sharing to
VLDB, rejected

- EcoCloud retreat

- Candidacy exam on
3 papers, by profs

- Internship at SAP in
Germany

2013

Collab, 1st paper

- Continue PhD
collab with SAP.

- Meetings with 2
SAP buddies. NUMA.
- EPFL <-> SAP

- Review papers

- Dagstuhl retreat

- 1st paper VLDB @
Riva del Garda

2014

More publishing

- Tutorial & poster
SIGMOD @ Utah

- Conference paper

- Workshop paper

- Tutoring interns

- CUSO winter school
- NUMA impressive
results and trust

- Thesis proposal

A

Final steps

- 2nd paper VLDB @
Hawaii

- Paper with intern

- 2nd place SIGMOD
programming contest
- Work on final paper

2016

Graduation

- 3rd paper VLDB
2017 @ Munich

- Tutorial book

- Prepping next in
line for SAP collab

- Thesis writing

- Industry interviews
(and preparation)

- Thesis presentation
- Graduation party

Oracle Labs
In Zurich
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Software development | did in research

Academia Industry collaboration

e Open-source, C++ e Still prototyping, but baking

e Low-level (CPU instructions, caches, inside the production code
performance) e PRsreviewed by colleagues

e Prototyping - things can be buggy and e Real-world measurable impact
not full features (e.g., half-baked parser) - on product
happy path e Bighardware and clusters to use

e Supervision by PhDs, postdoc, professor. e Advice from other industry
Collab with other academic colleagues. experts

e Ultimate output: experimental results e Final result may shape the

showcasing the potential product
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ABSTRACT

Non-uniform memory access (
performance challenges for main-memory column-stores in scaling
up analytics on modern multi-socket multi-core servers. A NUMA-
needs a strategy for data placement and
eduling that prefers fast local memory accesses over femole
memory accesses. and avoids an imbalance of resource utilization.
both CPU and memory bandwidih, across sockets. State-of-the-art
systems typically use & static strategy that always partitions data
Kets, and always allows inter-socket task stealing
In this paper. we show that adapling data placement and task
stealing to the workload can improve throughput by Ry
of 4 compared (o a static approach. We focus on b
workloads dominated by operators working on a sin
group (copartitioned tables). Our adaptive data placement algorithm
tracks the resource utilization of tasks. partitions of tables and table
bups. and sockets. When a utilization imbalance across sockets
is detected, the algorithm corrects it by moving or repartitioning
tables. Also, inter-socket tast is dynamically disabled for
memory-intensive tasks that could otherwise hurt performance.

A) archilectures pose numerous

1. INTRODUCTION

Processor vendors are scaling up modern servers by interconnecti

nultiple sockets in a single shared-memory system. Each socket
has a memory controller and multiple cores attached. introducing
new performance challenges for software. There are non-uniform
memory access (NUMA) laiencies across the system. The resources,
either CPU or memory bandwidih. of a single socket. as well as
the bandwidih of a single interconnect link. are additional botrle-
necks o be considered. Contemporary main-memory column-sore
database management systems (DBMS). such as SAP HANA [11]
or Oracle [23]. need 10 tackle the challenges of data placement and
scheduling in order to scale up on modern NUMA hardware and
efficiently service highly concurrent big data analytic:

In order 10 balance utilization across sockels. state-of-the-ar
systems (16, 20] partition data across sockets and employ task
scheduling with inter-socket task stealing. Our previous analysis
of concurrent NUMA-aware scans [28] showed that such a stati

This work s loonsed under the Crosive Comimons Attibuton-
NonCommercial-NoDerivatives 40 In -
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strategy for data placs the
most performant or ning can
incur an overhead
overall performan

n this paper, We sii aptivity apply
10 additional NUMA-aware operators. sonusing on aggregations and

equi-joins (see Section 4). We allempt (0 solve the open problem of
adapting data placement and task scheduling to the workload at ru
time, with the aini 1o balance resource uilization across sockets. We

hly concurrent workloads dominated by operators workin
ona single table or table group (copartitioned tables)

Our proposed de the history of CPU
and memory bandwidth ulizaton at thrc Joels
(a) tasks, (b partions of tables and table groups, and (¢ sockets
When the execution engine detects a utilization imbalance across
Sockets. it either moves or reparttions tables in order (o ix the imbal-
ance (see Section 6). Moreover, italso finds cold partitioned tables o
consolidate and disallows inter-socket stealing of memory-inensive
asks that would hurt performance (see Section 7)

Figure 1 shows a conceptual example of the most significant
aspects of our adaptive techniques. The server has four fully inter-
The workload consists of numerous concurrent
memory-intensive scans on three tables, which are initially placed
on o o the server's sockets. Task stealing is disallowed due (0 the
memory intensity of the scans. Two of the sockets are fully utilized.
and their memory bandwidih is saturated. while the remainin
sockets are idle. Our adaptive data placement detects the utilization
imbalance. and takes actions 1o fix it. Tl moves table TBL2 to socket
3. partitions TBL3 across sockets 2 and 4. and finally merges the
unutilized parts of TBIA. Socket utilization becomes balanced. The
total memory throughput is 2x higher than initially. improving the

orkload’s throughput by 2x (sce Section .1).

relies on trac

connected sock

Contributions. In this paper, we present adaptive NUMA-aware

hniques for main-memory column-stores. We adapt data place-
ment and inter-socket task stealing to workloads dominated by
operators working on a single table or table group (copartitioned

>=3
contributions

tables), at run-time. Our implemicuadon and experiments are hased
on a commiercial column-store (SAP HANA). Our contributions are

An adapive data placement sicategy that can improve throug
PULDY Up 10 2X in comparison (0 a static strategy thal always
partitions data across all sockets. We present an adaptive
heuristic algorithm that moves and repartitions tables at run-
time in order to halance the utilization across sockets.

Adapting inter-socket task stealing to the memory intensity of
tasks. improving throughput by 1. 1x—4x in comparison 10 a
static strategy that always allows inter-socket steali

To adapt data placement and task stealing, complete knowle
of the system’s utilization is needed. We present a de:
that tracks the wtilization history at the levels of (a) tasks.
(b) partitions of tables and table groups, and (c) sox

2. BACKGROUND
Inthis section, we give a brief overview of NUMA-awa d
placement and task scheduling in main-memory oo

NUMA. Processor vendors scale up modern machines with a non
uniform memory access (NUMA) architecture. Figure 24 shows an
example of a 4-Socket server. Each socket has a 15-core Intel Xeon
E7-4880v2 CPU. Each core has its own L1 and L2 anda
sockers cores shire 4 L3 cache, Eigh 16 GB DIMM are atached
to each sacket. The sockets are interconnecied to exchange data
requests and support cache coherence. In this example. each sock
hias 3 QPI links. forming a fully-interconnecied topology (maximum
of 1 hop across sockets). The topology, the interconnets, and the

cache coherence protocol are specific (o each systen.

NUMA-awareness. Since memory is distributed. new performance
challenges arise for software: (a) accesses o femole memory can be
up 1o 5x slower than local memory. (b) the bandwidth of a socket and
an interconnect can be additional hottlenecks. and (¢) the bandwidih
of an interconnect can be up to 7x lower than the bandwidih of a
socket [7. 28], Due Lo the lack of knowledge about inter-socket
routing or the cache coherence, a NUMA-aware application atienpts
0 solve the above challenges in a simple way: optimizing for
local memory accesses instcad of remote accesses, and avoidin
unnecessary centralized bandwidth bottlenecks.

Memory management i the operating system. The OS orzanizes
mesaeey Wy pial 1K pupea 7] Thepipled el of
virtual memory ich an application has allocated. is decided
upon te s s Tl I Lini,th defeut Lot polley
attempts to allocate physical memory for a virtual page from the
socket where the thread is running. Linux provides NUMA-aware

TBLEL [y

coul

v [oict |
e any
Socket3 spibprimiveris
(b) Example of the physical loc:
-socket server.

Figure 2: (a) d-socket serv
tion of the virtual memory of two tables on a 4.

functions for an application, such as mbind or move_pag
and get the physical location of its allocated virtual memory

Main-memory column-stores. The data of a colunn can be stored
sequentially in a vector in main-memory [11. 19. 20, 23]. Com-
pression techniques. such as dictionary encoding. arc typically used
10 reduce the amount of memory and porentially speed up proce
I 1. A generc lcionary. e coar s compos o an

teger vector. called in ector (IV) (naming can be different),
Uk ore vl T (1d) and the dicloary Vst i
sorted unique real values of the value IDs (28]

Figure 2b shows an example of the physical location of the virtual
memory of two tables with one colunn cach. Assuming the same
datatype and page-aligned allocations, the example hinis that Tabl
Has around triple number of rows than Table 1 with a similar number
of unique dictionary values. The DBMS has used OS NUMA-aware
functions to place Table I on Socket 1 and Table 2 on Socket 2

Data placement. An entire table can be placed on one socket as in

Figure 2b,or can be elyalal pationed i s o ckets [1.
I or round-robin partition

Can dofine mulipie m/rh’pmrulll."}L AILTBP share the same

h column in a table part has its own IV and

dictionary. As such, a table part can be entirely placed on one socket.

Task scheduling. With task scheduling. operations are encapsulated
in tasks, which are put into task queues. and pools of worker threads
are used to process them. The task scheduler can reflect the NUMA
topology of a machine [16. 20, 27. previous work. we
detailed our NUMA-aware task sc 28]. We showed
how stealing and a concurrency “hint” can help o saturate CPL
resources without unnecessary scheduling overhead and that steali

memory-intensive tasks can hurt performance. In this work, we

adapt task stealing 10 4 task’s memory intensity (see Section 7

3. RELATED WORK
We organize related work by static NUMA-aware solutions, adaptive
solutions. black-box solutions. and work in distributed systems

tic solutions. Most DBMS not mentioning advanced NUMA

optimizations indirectly rely on the static first-touch policy for data

placement. e.g.. Vectorwise [39]. Microsoft SQL

store [19]. or TBM DB2 BLU [30]. Tn a recent thesis describi

to parllelize query plans I Vector

nter-socket stealing is allowed based on task priorities and the

contention of sockets. In this work, we show that sealing should not
ed for memory-intensive tasks. Oracle’s distributed manager
the NUMA location of columnar data when the y.w‘ oy
[23]. but not when the workload char Per [20]

chunks all data, and Satically distibutes thom uniformiy over the

15, while inter-socket stealing is always enabled
There is also related work on NUMA-aware standalone operators,

Albutiu et al [5] construict s NUMA-aware sort-merge join. Hash-

joins. howeser, are shown (o be superior [6, 18]. Yinan et al [22]

optimize data shullling. Most related work. however, optimize for

Tow concurren mm.. Static data placement using all sockes of the

server, In this work, we optimize for highly concurrent workloads

with a data placeme it adapts 0 the workload

\(Llp!\w«l»h jons. Tiwo state-of-the-art research protoly pes use an
adapt A tion for data placement: ERTS [16] and
Ao 2 e er that employs adaptive range
ssigned 10 a worker thread. While

we target analytical workloads

e show in this paper

Related
work
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0 23GBfs T
Socket 1 RUH

aure 4: Tracking the resource uti

TGP, and sockets. Exemplary values shown for concurrent scans

Resource Utilization nistory

History (RUH
v ) value: uint64_t

pages: uint32_t ravg: double / et
ocket: int16_t amples: st<paircuintsa_ Cuintsa
owner: TablePart*

or TableGrouppart®
or Socket* "
memh: History //1 {uint64_t us): double
cpuh: History reset(): void

Time

RUH o b \
[(socket ] TablePart | | TableGroupPart)

fon of tasks, TBP and  Figure 5: Each table part (TBP), table group part (TGP), and

socket is associated with a resource utilization history (RUH).

two tables on socket 1 of our d-socket serv

and sockets. We ignore on purpose stolen tasks. The utilization of
sockets that steal appear non-saturated in our metrics. as stealing is
a temporary solution to balance CPU load until our adaptive data
placement algorithm (see Section 6) fixes the imbalance of local
utilization. In the example of Figur
memory TP of a task class is used when sched! e

to aggregate the utilization a

value is periodically sampled into a list of pairs of timestamps and

that periodically calls sample () on the histories of iis socket and
af a subset of all TBP and TGP. sample () appends a pair with the
current timestamp and value to the back of the samples list. and
increments the entries. If the entries grow over a specified limit, it
pair a he frontofthe It I our current mplementation

bread runs every 100 ms. and the limit of the samples

Bold, math, italics,

acronyms,
paragraphs

values. We maintain one background refresher thread per socke.

6.1  Abstract Workflow
‘The main component of our adaptive data placement is the Data
Placer (DP) thread. Figure 6 shows its abstract workflow. The first
time tables are loaded into memory. they can be placed across sockels
in a round-rabin manner. DP runs periodically in the background o
monitor the workload, and automatically takes care Lo either move
o repartition tables 1o fix a utilization imbalance
DP focuses on balancing CPU utilization, under the constraint of
not creating a memory bandwidth bottleneck. We remind that we
refer to local-only utilization as tracked in Section 5. We balance the
utilztion bety esources and colder
2 or partitioning tables. This strategy allows tables
ere previously on saturated sockets (0 e iy lnceate el
utilization using free threads on colder sockets (due to intra-query
parallelism). increasing the total system utilization
Atevery period. DP gets a snapshot of the active RUH (of TBP and
TGP) and their recent uilization. It then calculates their eligibilty for
moving and partitioning. depending on whether their past utlization
has been stable. Then, DP sorts the RUH within each socket by
their recent utilization. aggregating then as well to calculate the
recent utlization of the sockets. Afterwards. DP calculates the CPL
utilzation imbalance between all pairs of sockels. and sorts the pais.
revery pair of sockets, DP investigates whether a new placement
can reduce the imbalance. DP proceeds only if the imbalance is
over a threshold, and if the hot socket is saturated. Tf the hot socket
is not saturated. the TBP and TGP cannot increase their wtlization
by exploiting free threads on the cold socket. DP ilerates the RUH
of the hot socket, and examines whether moving or partitioning an
eligible RUH's owner (the cor TBP or TGP) reduces
imbalance. If additiona eate a memory handwidih
besleneck DE proceede iy o orgadion 1 RUTHs ey,

e outlin sure 6 are first executed while considering
moving an eligible RUH's ow an be moved across all
sockel pairs. we repeat the ~h;wm~m~y.n-v partiioning an eligibl
RUH's owner. This ensures we first prefer moving over partitioning

Workflows

It oed
to not sur Gy e again utilized
in the future (see Section 8.3 for a relevant experiment).

1o avoid an

Inc

g, round-robin) ) Data Placer (DP)

H per socket, a
o encving avelporh

Galcuate sock-| | Sort RUA
ets’ utilization [ per socket

Finished

Calculate utllization of new |,
placement for eligible RUH

Them. 7p~OK
first for moving and th conaint
for partitioning RUH

Merge a cold partitioned table/TG and move to coldest s

Figure 6: Abstract workflow of the Data Placer (DP).

Next, we detail how the eligibility of RUH is caleulated (see

tion 6.2). how we reduce the utilization imbalance by moving
or partitioning (e Secriaas 2 J1 pieces are put
together cters used
non ry values
are d can be
modificu J s

‘Table 1: Configurable parameters used in our algorithms, along
with the values we use in our experiments.

Description
Period of the Data Pl

We assume that each socket corresponds to a NUMA node |
amd i ol skl v sac e I et
maximum memory TP. This assumption is for typical NUMA servers

ith the same processors. and the same number and type of DIMM

6.2 Tnformation and Eligibility of RUH

At every period, DP finds the RUH of all TBP and TGP, takes a
snapshot of their recent utilization and calculates their eligibility
to be moved or partitioned. For every RUH, this information is
stored in an InfoRUH object, which is defined in Algorithm 1. and
alculated through the function calculateInfoRVH.

The algorithim firs stores the recent CPU and memory throughput
wtilization of the RUH (lines 2-3). The RUH is deemed active if
its wrilization is non-zero (line 4). DP continues to calculate the
cligibilty of the RUH for moving or partitioning. A RUH is deemed
eligible if its average utilization in the past does not diverge much
from its recent utilization. The amount of time we look in the past
depends on the implementation of the move or partition operatic

For the time to look in the past in the case of moving, we first
calculate the time required to move the RUH’s owner (line 5), by
multiplying its pa (microseconds per

e speed of moving
p by moving or parttioning a simple mock-u
. without 4 concurrent workload. See Table 2 for the speeds
of the machines we use in our experiments. The speeds are fough
estimates. One can improve accuracy by specializing the speeds
or the concurrent workload, or a table’s charac
such as the number of columns, data types, etc. However
need 1o be precise. since the aim of our eligibility calculations is to
disallow instant actions by DP and not delaying them for long.

Incor mplwentaon, e et wlc e TOP s vl
We use SAP HANA's functionality to unload a TBP from memor,
reload it on the desired socket. We do not use Linux's mo
because it would mess up the statistics of SAP HANA'
aware memory allocators [35]. Due o queries waiting during the
move, we double the time 1o look in the past (line s
optional and sin upl' prolongs the amount of time (o ook in the past.
Conceptually, the additional time corresponds 1o the time required
0 “recover” the utilization which drops to zero during the moe. We
then caleulate the average past utilization of both CPU and memory
TP (lines 6-7). The RUH is eligible for moving if the past utlization
i within & threshold of the recent uilization (line )

The algorithm then continues similarly f
iy of partioning (inos 514, There e thee diferences. First, we
require that the RUH is also eligible for moving (line 9). This is o

¢ the preference of DP to having first considered moving the

Algorithms

truct InfoRUH.
RUH: // poiner o

Hicorresponding RUH)
M “nymhw i

Mo i ([ TossMCpa - MO & & ¥ 6Oy i
(I recentMem fem | < ce * recentMem)
anPartition « canMove and 2 * current partitions < sockets
if canPartition then
tion o usbom & (BUH g & s of oo
p — RUH.cn usPartition)

) € * recentCpu) and
(I recentMem - pusthem | ., * roceniMem)

UH's owner before considering partitioning it. Second. the amount
of time to look in the past consists of partitioning plus the time
required to move the new partitions 1o the correct sockets (line 1)
We use SAP HANA's partitioning commands. which. contrary 10 the
implementation of moving, creates the partitions in the background
and allows queries [1]. Third. we limit the number of new partitions
to the number of sockets to avoid excessive partitioning (line

We note that in this work when we partition a TBP or TGP, we
partition the corresponding table or TG into double their previous
number of partitions. The reasons why we double the parttions are
Wo. First, artioning is more ime-consuming than movi. Since
we decide to partition, wa zsz i jiterof
pantition ally
move ‘h.u

i Conceptual ah
figures i

e vever, is not
stable in the ;. © partiionis

religible RUH

now fature

ceptual examples of calculating the partitioning
iy of (o) an incliiblc RUH, and (b an cligiblc RUEL

6.3 Reducing the Utilization Imbalance

‘The purpose of balancing the CPU utilization between sockets is 1o
allow tables to increase their utilization loiting free threads
on cold sockets when moved or partitioned out of saturated sockets.
When considering moving or partitioning a tables, however. we
assume the worst case that it does not increase its uilization. This
allows Us 10 be on the safe side when calculating the new wilization
imbalance. and truly decrease it with every move or partition.
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4-sockets machine Adaptive's task class thresh
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Mem. TP (x10%)
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tealing wjo stealing ====adaptive

“alibration experiment for three NUMA servers.

saturates the interconnect network and overwhelms the already
saturated remote memory controllers. The overwhelmed memory
ontrollers achieve much lower overall memory TP (for both local
and remote tasks) than the case of disallowing stealing,

As nincreases, the workload becomes more CPU-intensive, and
the memory TP of the system and the task class finally starts
decreasing.” In terms of CPI (cycles per instruction). e.g.. on the
4-socket server for the case when stealing s disabled, it starts at 0.83
and gradually increases up to 1.25 (for n = 30) «l.wm,mnpmm
stealing becomes betier, and remote tasks can be satisfied through
the Inercomneces and the emote memory conirolrs aucient

Atthe switching point, we mark the memory TP of the task class
as the threshold for stealing vs. not stealing. Our adaptive task
stealing uses this threshold at run-time. If the exponential average of
atask class becomes higher than the threshold, sealing is disallowed
for tasks of this task class. If the exponential average hecomes lower
than the threshold. stealing is allowed.

e 9 shows the threshold pinpointed for each server, and
also shows the adaptive task stealing that uses this threshold. The
adaptive line achieves the best throughput for all cases of power .
successfully allowing stealing at the switching point.

Finally. we note that the calibration experiment can be further
xtended to specialize the threshold for more cases of dnlm-ul
number of sockets having data. different CPU uilization per soc
etc. Our current calibration experiment is sufficient for our use cases
and experiments. as it roughly finds out the switching point for the
middle” case where half of the server's sockets have active data

8. EXPERIMENTAL EVALUATION
We first present our experimental configuratior
s of  custom benchmark and finally of the TP
wrmwl\mlmml),umnun. We use a prototype built on SAP
HANA (SPS11). a commercial main-memory column-store.
our NUMA-aware k. scheduler and scans [2
for more NUMA-aware operators (see Section 4). track resource
uilization (see Section 5), and employ our adaptive NUMA-aware
data placement (see Section 6) and
For all experiments. we warm up the DBMS. we admit all clients
and disable resul caching. LLC misses, CPU load, and memory

stealing (see Section 7).

TP are gathy 'n'd from Linux and HW couniers (integrating Intel
P v wiilizations

-‘Repetitions, -

g sockets.
When cl STD averaged
sampled eral is decreased
with a stable Woin itn a imeline consist of a
(in previous sections as well) are

iterations with a standard deviation <
e use. The first is the
one of Figure 2a. The second is an or. The third is a rack-
300H server. NUMA characteristics, such
idle latencies and peak memory bandwidths.

are measured with Intel Memory Latency Checker [34],

le 2 shows chara

Table 2: Characteristics of the three NUMA servers we use.
Machine

Statistic

7n B
WMove us/page
Partition us/page

Custom benchmark. Our dataset has 64 tables (TBL1
each table we generate a CSV file of 50 million rows, around 3.
for a total of 204 C Each table has an ID i
(PK), 8 additional columns (COL1-8
unique values. Each experiment nent.
o oyt S EEUP
H l nt \Ahd‘ a random ¢ Hmmh from its .

SELECT SUM(TO_DOUBLE (CO
ERE COLX > AND COLX
client selects a random colun

ation phas
the group-by because it has the least number of unique values.
We cast to double to avoid potential numeric overflow errors

) SELECT TBLz
= TBLz.ID AN x
The client joins two tar <on the TD uvhmm A random
olumn is selected 1o fll r.mJ(\rqu This query involves the
equi-join steps mentioned in Section 4.

Before each experiment begins. we let clients build a prepared
statement for each query they can issue. There are no thinkin

times. The clients do not fetch resulis. in order 10 not let the network
transfer dominate. Each TP value in a timeline corresponds 1o the
slope of the achieved queries during the previous 30 seconds

8.1 Adaptive Data Placement
The frstxperiment alizes the introductory example of Fi

L1 and TBL2 are placed on socket S1. TB
partitioned across S3 and S4. Each of the tables TBL1-3 are targeted
Ty 64 clients executing query (a) with a low selectivity (0.001%) for
S minutes. Figure 10 shows the timelines of the throughput (TP).
the utlization imbalance, and additional performance measurements
that include | 11 a5 our tracked wtilization (RUH).

Atthe beginns S1and S2 execute queries as shown by their
RUH. Queriesare dominated by the e n's fiest phase (“TV-Scan”)
Tasks are memory-intensive as shown by the task class’s memory T,
which is over the stcaling threshold. That is why adaptive stealing
disallows stealing, and most LLC misses are local. As shown by the
tables' RUH. TBL1 and TBL2 share S1. while TBL3 fully utlizes

DP recognizes the imbalance. but does nol take action because the
TBP are not yet eligible to be moved or partitioned. DP searches the
catalog to find TBL4 which is partitioned and cold (thus not shown
in Figure 10). and at 16 s starts a background request to merge it
The merge finishes at 64 5. and the single TBP is moved to S4 (a cold
sockel) at 106 5. The merge and move contribute 1o the small bump
in the CPU load and memory TP of S3 and S4. Another reason for
their increased CPU load is that their worker threads attempt to steal
tasks from other sockets, but tasks
be stolen in this experinent. Since $3 and S4 do not proce:
queries, we do not account this busy CPU load in their RUH

AUS3 s (see markers on the timeline of the tables’ RUH graphs).
DP examines the pair of S1 and S3. Tt decides to fix their imbalan
by moving TBL2. which has become eligi
move completes at 91 s. Overall TP and memory TP are increased.

P detects that there s still a utilization imbalance b

3 sockels are utilized and $4 is not (as shown by its RUH). /
DP examines the pair of $2 and S4. Tt decides o fix their imbalan
by partitioning TBL3. which is eligible for partitioning, into two
parts. AUI74 s, partitioning completes, and the two TBP are moved
10 82 and $4 concurrently. which completes at 190 s

After that point, the imbalance is decreased within our threshold.
and there are no me
experiment, overall memory TP is 2x more. and TP is also 2X mor

¥ counters as

memory-intensive and cannol

actions. Tn comparison to the beginning of the

0 150 300
Time (sec]

LLC misses (x10%/5)
RUH.memh.ravg

Task dlass (GB/5)
RUH cpuh ravg
RUH.memh.ravg

150 30 150 300
Time (sec] Time (sec)

gure 10: Tntroductory experiment showing the adapt
placez e

Detailed results

.2 Adaptive Task Stealing
w the effect of adaptive task stealing, we use scans of varyin
vity. We place TBL1 on §2 and TBL on S4. Adaptive

placement i disabled. Each of the tables is targeted by 256 clients

executing query (a) with the specified selectivity. Half of the socke

have local tasks. while the other half would need to steal. For each

selectivity, we execute 5 min runs of: enabled stealing for all tasks,

disabled stealing for all tasks. and adaptive stealing. We report each
TP. The results are shown in Figure 11

.u,m madap
150 - Ge/

100 Ill

Avg. Mem. 0

igure 11: Exp nt showing how adaptive task stealing dis-
allows ~|(.|I|||L o mer ‘mory-intensive classes (4-socket server).

For low selectivities, the scan’s first phase (“1V-scan”) dominates
Tasks are memory-iniensive and stealing hurts TP by up to 23
for the case of 0.1% selectivity. As selectivity increases. the scan's
second phase (materialzation) dominates and is paralllized. The
fewer IV-scan Lasks can utilize more memory bandwidth on their
socket. The dominating materialization tasks are CPU-intensive. due
o their random accesses 1o the diction:

improve TP by up to 70% for the case of 10% selectivity. Adaptiy
stealing achieves the best TP of cither stealing or not stealing in ai
cases of selectivity. It can also. e.g. for the case of 1 selectivity
further improve performance by 15%. This is due to disallowing
stealing of IV-scan tasks. and allowing stealing of materialization
tasks, instead of taking a static strategy for all task classes

8.3 Partitioning Overhead

Here, we show how our adaptive data placement can avoid the
overhead of unnecessary naritioning We focus on a
ittt

No red+green. :
Pri nt in ra has no activity

= shows the results.
socket to balance 1. TP reaches 1.7x of the TP of the first
be saturated with non-partitioned tables. This is also shown by the

P Imbsncn [ WSUS2 WS WS4 Ml Whamore

051015
Time (min]

Threads (x w)

1

C misses (x10% /5

0 5 10 15 ) _5 10
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Figure 12: The overhead of partitioning (8-socket server).
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Final summary
and takeaway

Priorities and fairness. Priorities and fairness are an orthogonal
issue out of this paper’s scope. We note that our task scheduler sup-
ports priorities and a degree of fairness (based on query submission
time) [28)]. In typical cases. if a workload has user-defined prioritie
the prioritized tasks will highly contribute to the utilization of RUH
which will be considered first by DP for moving or partitioning.

ask classes. Tasks in the sane class should have similar memory
throughput. We assume that classes are defined manually, as we
do in Section 5 for our NUMA-aware operators. One can furt
specialize classes, e.g.. by the involved predicates. As seen in
Section 7, an agg 3 y throughput can vary depending
on the complexity ve need a way (0 classiy
complex predicates. This is left out of the paper’s scope. For our
implementation and experiments, we use rather typical predicates
and the defined task classes can sufficiently capture the memory
intensity of our NUMA-aware operators” different phases

Unit of data placement. Our unit of data placement is a row

ise partition of a table. An alternative would be column-wise
partitioning. i.e.. placing 4 table’s columns on different sockets
In such a case, a global dictionary (see Section 4) is not needed,
but queries referencing columns on multple sockets incr a ot of
remote accesses. For this work, we assume that the organization of
associated columas into tables is left 10 the administrator.

nci throughput. We balance primarily the CPU
wtilizion under he consiaint of no creating memory bandwidih
bottlenecks. This s to allow newly placed data to potentially increase
their utilization. Since we balance local-only CPU utilization, this
can indirectly balance memory TP as well as shown in many of our

ents. This is not guaranteed. however. One may wish DP to
continue balancing memory TP after CPU utilization is balanced.
under the constraint of not increasing the CPU imbalance. DP’s
possible actions can be extended to consider exchanging TBP or TGP
between sockets. We have found only a few cases where balancing
memory TP is required to slightly improve IPC and TP.

10. CONCLUSION:

In this paper, we show that main-memory columa-stores should
not employ a static strategy of always partitioning data across all
sockets, and always allowing inter-socket task stealing. We show
that unnecessary partitioning involves an overhead of up to 2x
in comparison to not partitioning. For this reason.

an adaptive data placement algorithm that can track & utilization
mbalance across sockets, and can move or repartition tables at
run-time 1o fix the imbalance. Also, we show that inter-socket
stealing of memory-iniensive tasks can hurt throughput by up to
4x in comparison to not stealing. For this reason, we develop an
adaptive technique that disallows stcaling at run-time for tasks whose
memory intensity exceeds # fixed threshold for a NUMA server.
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