
Finding needles in ever increasing haystacks

Overview of the building blocks for the scalability of Elasticsearch

Iraklis Psaroudakis

May 6th, 2023 at Devoxx Greece

Iraklis
Psaroudakis

Agenda:

● What is Elastic

● What is Elasticsearch

● How Elasticsearch scales out with shards

● Distributed searches & aggregations

● Shard recovery

● Cluster state

● Scaling with data streams

● Scaling with ILM

● Future: scaling with Serverless

This talk contains personal views and is not officially endorsed

Principal Software Engineer
at Elastic, focusing on distributed

Previously:
Oracle Labs, graph-based analytics

PhD at EPFL, scaling up analytics
ECE degree at NTUA in Athens

https://www.elastic.co
https://labs.oracle.com/
http://www.epfl.ch/
https://www.ntua.gr/

Meet Elastic

Elastic helps the world’s
leading organizations
accelerate results that
matter by putting data
to work with the power
of search.

Founded in 2012
NYSE: ESTC

TECHNOLOGY FINANCE TELCO CONSUMER HEALTHCARE PUBLIC SECTOR AUTOMOTIVE /
TRANSPORTATION RETAIL

The Elastic Search Platform is for everyone

Airbus

The Elastic Search Platform

Enterprise Search Observability Security

Kibana
Explore, Visualize, Engage

Elasticsearch
Store, Search, Analyze

Integrations
Connect, Collect, Alert

Public cloud Hybrid On-premises

Elasticsearch

● Distributed, scalable, highly available,
resilient search & analytics engine

● HTTP based JSON interface
● Flexibility (index time vs. query time)
● Based on Apache Lucene
● Much more than grep or SQL’s

LIKE = '%quick%
○ Ranked results (BM25, recency, popularity),

fuzzy matching
○ Complex search expressions
○ Spell correction, Synonyms, Phrases, Stemming

● Timeseries, geospatial, ML, vector search

github.com/elastic/elasticsearch

db-engines.com/en/ranking

https://lucene.apache.org/
https://github.com/elastic/elasticsearch
https://db-engines.com/en/ranking

Inverted index
Document 1: “The quick brown fox jumped over the lazy dog”
Document 2: “Quick brown foxes leap over lazy dogs in summer”

Quick 2
The 1
brown 1,2
dog 1
dogs 2
fox 1
foxes 2
in 2
jumped 1
lazy 1,2
leap 2
over 1,2
quick 1
summer 2
the 1

Map: sorted tokens → documents Queries

“lazy AND dog”

“lazy OR dog”

→ [1] AND [1,2] → [1]

→ [1] OR [1,2] → [1,2]
and a document can have a higher
score (TF/IDF based)

~ Lucene segment

● What else can be in there?
○ Term frequencies: relevancy
○ Positions: positional queries
○ Offsets: highlighting
○ Stored fields: the original data

A Lucene instance comprises of segments

Each being a self sufficient inverted index
● Segments are immutable!

○ Pros: write-once, read efficient, file system cache
○ Cons: deletes (separate file) & updates (new segment), housekeeping (e.g., merging)

● Bulk insertions preferred

Quick 2
The 1
brown 1,2
dog 1
dogs 2

leap 2
over 1,2
quick 1
summer 2
the 1

fox 1
foxes 2
in 2
jumped 1
lazy 1,2

(disk) (disk) (in memory)

Credits: “Introduction into full-text search with distributed search engines” (2019), “Distributed search under the hood” (2021) by Alexander Reelsen

https://noti.st/spinscale/szfgcL/introduction-into-full-text-search-with-distributed-search-engines
https://speakerdeck.com/spinscale/elasticsearch-distributed-search-under-the-hood

Elasticsearch scales with shards

An “index” consists of shards
● A shard is a Lucene instance
● Primary shards

○ Partitioning of data in the index
(write/ingest scalability)

● Replica shard
○ Auto synced copy of a primary

(query scalability)

Quick 2
The 1
brown 1,2
dog 1
dogs 2

leap 2
over 1,2
quick 1
summer 2
the 1

fox 1
foxes 2
in 2
jumped 1
lazy 1,2

… ……

… ……

Quick 3
big 4

summer 4
zebras 3,4

… …

… …

P0

R0

R0

P1

R1

R1

Index “children books”

Scaling out to multiple machines

Primary and replica shards are distributed across the cluster
● In a balanced manner → ingestion and querying distribution
● Replicas are not collocated → fault tolerance

Node 1

logs

P0

Scaling out to multiple machines

Primary and replica shards are distributed across the cluster
● In a balanced manner → ingestion and querying distribution
● Replicas are not collocated → fault tolerance

Node 1

logs

P0

products

P0 P1

New index
with 2

primaries

Scaling out to multiple machines

Primary and replica shards are distributed across the cluster
● In a balanced manner → ingestion and querying distribution
● Replicas are not collocated → fault tolerance

Node 1

logs

P0

products

P0 P1

Node 2

New node
joins

Scaling out to multiple machines

Primary and replica shards are distributed across the cluster
● In a balanced manner → ingestion and querying distribution
● Replicas are not collocated → fault tolerance

Node 1

logs

P0

products

P0

Node 2

products

P1

Redistribution
of shards

Scaling out to multiple machines

Primary and replica shards are distributed across the cluster
● In a balanced manner → ingestion and querying distribution
● Replicas are not collocated → fault tolerance

Node 1

logs

P0

products

P0

Node 2

products

P1

logs

R0

Add replica to
logs

Scaling out to multiple machines

Primary and replica shards are distributed across the cluster
● In a balanced manner → ingestion and querying distribution
● Replicas are not collocated → fault tolerance

Node 1

logs

P0

products

P0

Node 2

products

P1

logs

R0

Node 3

products

logs

R0

R0 R1

● New node
● logs: 1 shard, 2 replicas

● products: 2 shards, 1 replica

Distributed search

Two phase approach
● Query all shards, collect top-k hits, sort (on score) all results on coordinating node
● Create real top-k result set and fetch data (top-k instead of shards * top-k)

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Distributed search

Two phase approach
● Query all shards, collect top-k hits, sort (on score) all results on coordinating node
● Create real top-k result set and fetch data (top-k instead of shards * top-k)

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

Query, e.g.,
TOP 5 products whose description has “denim”

Coordinating
node

Distributed search

Two phase approach
● Query all shards, collect top-k hits, sort (on score) all results on coordinating node
● Create real top-k result set and fetch data (top-k instead of shards * top-k)

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

QueryQuery

Distributed search

Two phase approach
● Query all shards, collect top-k hits, sort (on score) all results on coordinating node
● Create real top-k result set and fetch data (top-k instead of shards * top-k)

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

Top-kTop-k

Distributed search

Two phase approach
● Query all shards, collect top-k hits, sort (on score) all results on coordinating node
● Create real top-k result set and fetch data (top-k instead of shards * top-k)

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

SortSort
Real top-k

Distributed search

Two phase approach
● Query all shards, collect top-k hits, sort (on score) all results on coordinating node
● Create real top-k result set and fetch data (top-k instead of shards * top-k)

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

FetchFetch

Distributed search

Two phase approach
● Query all shards, collect top-k hits, sort (on score) all results on coordinating node
● Create real top-k result set and fetch data (top-k instead of shards * top-k)

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

Response

Distributed aggregations

Slice, dice and combine data to get insights
● Can be run on top of a result set of a query
● Some aggregations require your data to be central, e.g., cardinality → efficient estimations

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

Aggregation, e.g.,
sum price of products

Distributed aggregations

Slice, dice and combine data to get insights
● Can be run on top of a result set of a query
● Some aggregations require your data to be central, e.g., cardinality → efficient estimations

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

sum sum

Distributed aggregations

Slice, dice and combine data to get insights
● Can be run on top of a result set of a query
● Some aggregations require your data to be central, e.g., cardinality → efficient estimations

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

sum sum

Distributed aggregations

Slice, dice and combine data to get insights
● Can be run on top of a result set of a query
● Some aggregations require your data to be central, e.g., cardinality → efficient estimations

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Client

sum

Shard recovery

What happens to shards when a node fails?
● If primary is lost → a replica is promoted to primary
● If replica is lost → it is copied from the primary to another node

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Shard recovery

What happens to shards when a node fails?
● If primary is lost → a replica is promoted to primary
● If replica is lost → it is copied from the primary to another node

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1

Shard recovery

What happens to shards when a node fails?
● If primary is lost → a replica is promoted to primary
● If replica is lost → it is copied from the primary to another node

Node 1

products

P0

Node 2

products

R0

Node 3

products

R1P1R1

Copy

Cluster state

Contains the core information on the cluster membership and the indices
● One elected master node

○ Proposes updates of the cluster state based on events (e.g., node leaves, index
created) and distributes it to all nodes

○ Decides data placement, where shards are moved and replicated
○ Node health checks
○ Not needed for reading/writing

● Consensus is used across a small set of master-eligible nodes
○ To establish the cluster state update proposals (quorum required)
○ To re-elect a master node on failure

Cluster state – bootstrapping

Node 1 Node 2 Node 3

Cluster state – election

Node 1 Node 2 Node 3

Node 1 proposes to become master

CS1 CS1 CS1

Cluster state – election

Node 1 Node 2 Node 3

Nodes 2 and 3 vote yes

CS1 CS1 CS1

Cluster state – election

Node 1 Node 2 Node 3

Node 1 becomes master

CS1 CS1 CS1

Cluster state – election

Node 1 Node 2 Node 3

Node 1 commits the cluster state.

CS1 CS1 CS1

Cluster state – election

Node 1 Node 2 Node 3

CS1

Nodes 2 and 3 acknowledge

CS1 CS1

Cluster state – node joins

Node 1 Node 2 Node 3

CS1 CS1 CS1

Node 4

Node 4 requests to join the cluster

Cluster state – node joins

Node 1 Node 2 Node 3

CS2 CS2 CS2

Node 4

Master proposes new cluster state

CS2

Cluster state – node joins

Node 1 Node 2 Node 3

CS2 CS2 CS2

Node 4

Acknowledgements (including yes
votes from master-eligible nodes)

CS2

Cluster state – node joins

Node 1 Node 2 Node 3

CS2 CS2 CS2

Node 4

Commit new cluster state

CS2

Cluster state – node joins

Node 1 Node 2 Node 3

CS2 CS2 CS2

Node 4

Acknowledgements

CS2

Cluster state – index created (fast forwarded)

Node 1 Node 2 Node 3

CS3 CS3 CS3

Node 4

CS3

P0

Data steam

Scaling with data streams

Store append-only time series data across multiple indices
● Gives a single named resource for requests
● Rollover indices based on age and/or size

.ds-logs-2023.
05.06-000001

.ds-logs-2023.
05.07-000001

.ds-logs-2023.
05.08-000001

Data steam

.ds-logs-2023.
05.06-000001

.ds-logs-2023.
05.07-000001

.ds-logs-2023.
05.08-000001

Indexing
request

Search request
(e.g., on yesterday and

today’s data)

Older indices
typically have

less traffic

Scaling with Index Lifecycle Management

Tiers of data nodes with different cost/performance characteristics
● Automatic rollover of data streams through the data tiers via a lifecycle policy

Data steam

.ds-logs-2023.
05.04-000001

.ds-logs-2023.
05.05-000001

.ds-logs-2023.
05.08-000001

.ds-logs-2023.
05.06-000002

.ds-logs-2023.
05.06-000001

.ds-logs-2023.
05.07-000001

HotHotWarm WarmColdFrozen

Most frequently accessed
read and written data. E.g.,

2 replicas, SSD disks,
beefier machines.

Scaling with Index Lifecycle Management

Tiers of data nodes with different cost/performance characteristics
● Automatic rollover of data streams through the data tiers via a lifecycle policy

Data steam

.ds-logs-2023.
05.04-000001

.ds-logs-2023.
05.05-000001

.ds-logs-2023.
05.08-000001

.ds-logs-2023.
05.06-000002

.ds-logs-2023.
05.06-000001

.ds-logs-2023.
05.07-000001

HotHotWarm WarmColdFrozen

Less frequently accessed
read and written data. E.g.,

1 replica, HDD disks,
cheaper machines.

Scaling with Index Lifecycle Management

Tiers of data nodes with different cost/performance characteristics
● Automatic rollover of data streams through the data tiers via a lifecycle policy

Data steam

.ds-logs-2023.
05.04-000001

.ds-logs-2023.
05.05-000001

.ds-logs-2023.
05.08-000001

.ds-logs-2023.
05.06-000002

.ds-logs-2023.
05.06-000001

.ds-logs-2023.
05.07-000001

HotHotWarm WarmColdFrozen

Read-only data. Searchable
snapshots stored on a

cloud object store (e.g., S3)
and fully cached on disk.

No replicas.

Scaling with Index Lifecycle Management

Tiers of data nodes with different cost/performance characteristics
● Automatic rollover of data streams through the data tiers via a lifecycle policy

Data steam

.ds-logs-2023.
05.04-000001

.ds-logs-2023.
05.05-000001

.ds-logs-2023.
05.08-000001

.ds-logs-2023.
05.06-000002

.ds-logs-2023.
05.06-000001

.ds-logs-2023.
05.07-000001

HotHotWarm WarmColdFrozen

Read-only data with slower
queries. Partially cached

(on disk) searchable
snapshots from cloud

object store.

Future: Scaling with Serverless
Stateless: store indices or cluster state on a cloud object store

● Fault tolerance via cloud → no replicas
● Just two data tiers: indexing and search, which can be scaled independently

75% indexing
throughput

improvement
Credits: https://www.elastic.co/blog/stateless-your-new-state-of-find-with-elasticsearch

https://www.elastic.co/blog/stateless-your-new-state-of-find-with-elasticsearch

Summary
● Elasticsearch is an unparalleled scalable search & analytics engine:

○ Scaling Lucene instances with multiple shards
○ Distributed searches and aggregations over multiple nodes
○ Master node directs the cluster state updates, via an efficient consensus protocol
○ Time based data streams are scaled with Index Lifecycle Management
○ Future: serverless vision based on keeping state on cloud object store

● Example of scalability
○ Adobe (2018): 400 VMs, 10B docs, 600q/sec, 6000docs/sec
○ Elastic Internal Observability Clusters (2022): 207 clusters (through Cross-Cluster

Search), 1.2 trillion docs, 300TB events/day, 4 cloud providers (53 regions)
○ Elastic Stack & Cloud: Start from AWS in 3 clicks, learn about Elastic’s serverless

vision, Benchmark-driven optimizations, A new era for cluster coordination in
Elasticsearch, Autoscale your Elastic Cloud data and machine learning nodes, How
many shards should I have in my Elasticsearch cluster?

https://www.elastic.co/elasticon/tour/2018/santa-clara/elastic-at-adobe-making-search-smarter-with-machine-learning-at-scale
https://www.elastic.co/blog/elastic-observability-clusters-upgrade-latest-release-save-money
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-cross-cluster-search.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-cross-cluster-search.html
https://www.elastic.co/blog/oct-2022-launch-elasticsearch-kibana-cloud
https://www.elastic.co/blog/oct-2022-launch-elasticsearch-kibana-cloud
https://www.elastic.co/blog/benchmark-driven-optimizations-scalability-elasticsearch-8
https://www.elastic.co/blog/a-new-era-for-cluster-coordination-in-elasticsearch
https://www.elastic.co/blog/a-new-era-for-cluster-coordination-in-elasticsearch
https://www.elastic.co/blog/autoscale-your-elastic-cloud-data-and-machine-learning-nodes
https://www.elastic.co/blog/how-many-shards-should-i-have-in-my-elasticsearch-cluster
https://www.elastic.co/blog/how-many-shards-should-i-have-in-my-elasticsearch-cluster

Community, culture and careers

● Vibrant community
○ Community portal → www.elastic.co/community
○ Elastic Community on Slack → ela.st/slack
○ Community videos → ela.st/community-youtube
○ Discussion forums → discuss.elastic.co
○ Elastic Contributor Program (e.g., earn training) → elastic.co/community/contributor
○ Community events & groups across the globe → community.elastic.co
○ Newsletter. News like AI-ready vector search with exact match and approximate kNN

search, or Integrate with ChatGPT.
● Careers → elastic.co/about/careers

○ Elastic Source Code, remote, 2600+ employees across 40+ countries
● Subscribe for next meetup.com/greece-elastic event

○ Which is expected in Athens in June!

http://www.elastic.co/community
https://ela.st/slack
https://ela.st/community-youtube
http://discuss.elastic.co
https://elastic.co/community/contributor
https://community.elastic.co
https://ir.elastic.co/news-events/presentations/presentation-details/2023/Machine-Learning--AI-with-Elastic-2023-IBKI8oezAb/
https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html
https://www.elastic.co/blog/chatgpt-elasticsearch-openai-meets-private-data
https://www.elastic.co/about/careers
https://www.elastic.co/about/our-source-code
https://meetup.com/greece-elastic

Thank you!
Questions?
Iraklis Psaroudakis
www.kingherc.com

http://www.kingherc.com

